Design principles for single standing nanowire solar cells: going beyond the planar efficiency limits
نویسندگان
چکیده
Semiconductor nanowires (NWs) have long been used in photovoltaic applications but restricted to approaching the fundamental efficiency limits of the planar devices with less material. However, recent researches on standing NWs have started to reveal their potential of surpassing these limits when their unique optical property is utilized in novel manners. Here, we present a theoretical guideline for maximizing the conversion efficiency of a single standing NW cell based on a detailed study of its optical absorption mechanism. Under normal incidence, a standing NW behaves as a dielectric resonator antenna, and its optical cross-section shows its maximum when the lowest hybrid mode (HE11δ) is excited along with the presence of a back-reflector. The promotion of the cell efficiency beyond the planar limits is attributed to two effects: the built-in concentration caused by the enlarged optical cross-section, and the shifting of the absorption front resulted from the excited mode profile. By choosing an optimal NW radius to support the HE11δ mode within the main absorption spectrum, we demonstrate a relative conversion-efficiency enhancement of 33% above the planar cell limit on the exemplary a-Si solar cells. This work has provided a new basis for designing and analyzing standing NW based solar cells.
منابع مشابه
Performance-limiting factors for GaAs-based single nanowire photovoltaics.
GaAs nanowires (NWs) offer the possibility of decoupling light absorption from charge transport for high-performance photovoltaic (PV) devices. However, it is still an open question as to whether these devices can exceed the Shockley-Queisser efficiency limit for single-junction PV. In this work, single standing GaAs-based nanowire solar cells in both radial and vertical junction configurations...
متن کاملSingle-nanowire solar cells beyond the Shockley-Queisser limit
Light management is of great importance in photovoltaic cells, as it determines the fraction of incident light entering the device. An optimal p–n junction combined with optimal light absorption can lead to a solar cell efficiency above the Shockley–Queisser limit. Here, we show how this is possible by studying photocurrent generation for a single core–shell p–i–n junction GaAs nanowire solar c...
متن کاملImproving the optical properties of thin film plasmonic solar cells of InP absorber layer using nanowires
In this paper, a thin-film InP-based solar cell designed and simulated. The proposed InP solar cell has a periodic array of plasmonic back-reflector, which consists of a silver layer and two silver nanowires. The indium tin oxide (ITO) layer also utilized as an anti-reflection coating (ARC) layer on top. The design creates a light-trapping structure by using a plasmonic back-reflector and an an...
متن کاملStudy the Effect of Silicon Nanowire Length on Characteristics of Silicon Nanowire Based Solar Cells by Using Impedance Spectroscopy
Silicon nanowire (SiNW) arrays were produced by electroless method on polycrystalline Si substrate, in HF/ AgNO3 solution. Although the monocrystalline silicon wafer is commonly utilized as a perfect substrate, polycrystalline silicon as a low cost substrate was used in this work for photovoltaic applications. In order to study the influence of etching time (which affects the SiNWs length) on d...
متن کاملNanowire Solar Cells
The nanowire geometry provides potential advantages over planar waferbased or thin-film solar cells in every step of the photoconversion process. These advantages include reduced reflection, extreme light trapping, improved band gap tuning, facile strain relaxation, and increased defect tolerance. These benefits are not expected to increase the maximum efficiency above standard limits; instead,...
متن کامل